drupal statistics module

Machines Like Us

Decoding worm lingo

Monday, 16 April 2012
by Katie Neith

Many different species of nematodes were found by the Sternberg lab to communicate using the same types of chemical cues. Credit: Caltech

Caltech biologists discover that many nematode species make the same types of small-molecule pheromones.

All animals seem to have ways of exchanging information—monkeys vocalize complex messages, ants create scent trails to food, and fireflies light up their bellies to attract mates. Yet, despite the fact that nematodes, or roundworms, are among the most abundant animals on the planet, little is known about the way they network. Now, research led by California Institute of Technology (Caltech) biologists has shown that a wide range of nematodes communicate using a recently discovered class of chemical cues.

A paper outlining their studies—which were a collaborative effort with the laboratory of Frank C. Schroeder, assistant scientist at the Boyce Thompson Institute for Plant Research (BTI) of Cornell University—was published online April 12 in the journal Current Biology.

Previous research by several members of this team had recently shown that a much-studied nematode, Caenorhabditis elegans, uses certain chemical signals to trade data. What was unknown was whether other worms of the same phylum "talk" to one another in similar ways.

But when the researchers looked at a variety of nematodes, they found the very same types of chemicals being combined and used for communication, says Paul Sternberg, the Thomas Hunt Morgan Professor of Biology at Caltech and senior author on the study. "It really does look like we've stumbled upon the letters or words of a universal nematode language, the syntax of which we don't yet fully understand," he says.

Nematodes are wide-ranging creatures; they have been found in hot springs, arctic ice, and deep-sea sediments. Many types of nematodes are harmless, or even beneficial, but others cause damage to plants and harm to humans and animals. Decoding the language of these worms could allow us to develop strategies to prevent the spread of unwanted nematode species, saving time and money for the agricultural and health-care industries.

"We can now say that many—maybe all—nematodes are communicating by secreting small molecules to build chemical structures called ascarosides," says Sternberg, whose past research in C. elegans found that those worms secrete ascarosides both as a sexual attractant and as a way to control the social behavior of aggregation. "It's really exciting and a big breakthrough that tells us what to look for and how we, too, might be able to communicate with this entire phylum of animals."

Building upon Sternberg's previous findings, he and Andrea Choe, then a graduate student and now a postdoctoral scholar in biology at Caltech, decided to look for evidence of ascarosides in other species of nematodes. These included some parasitic organisms as well as some benign roundworm samples.